

Research Silicon Valley

Computational Education: A Data Opportunity?

Rakesh Agrawal Microsoft Research Mountain View, California October 14, 2013

2013 Data Base Research Self Assessment Workshop

Thinking About Education

- Three key questions:
- What is being taught
 - Curriculum, syllabus, educational material
- How it is being delivered
 - teachers, classes, assessments
- How it is funded
 - business models

Emergent Perfect Storm

- Electronic textbooks
 - Fast adoption of cloud-connected electronic devices (worldwide)
 - Open content (e.g. OpenStax, ck12.org, NCERT)
- Internet-based classes
 - MOOCs (e.g. Coursera, EdX, Udacity, Khan, TED-Ed)
 - Small virtual classes (e.g. Shankar Mahadevan Academy)
 - Electronic certification (e.g. Mozilla's OpenBadges)
- New models of funding education
 - Recipients give back to the seed fund for future recipients at their pace (e.g. Dakshana)
 - Market for options on future earnings

Data Mining for Enriching Electronic Textbooks

Algorithmic enhancement of textbooks for enriching reading experience

References to selective web content

Links to authoritative articles [AGK+10], images [AGK+11b] and videos [ACG+13] based on the focus of the section

Microsoft[®]

References to prerequisites

Links to concepts necessary for understanding the present section, derived using a model of a how students read textbooks [AGK+13]

- Validation on textbooks from U.S.A and India, on different subjects, across grades
- Prototypes and research papers (see <u>References</u>)

Some Data-Centric Research Questions

- Inferring learning units and dependence between them from current educational material (knowledge graph)
- Improvement in educational material based on data on student interactions with the material
- Personalized learning plans
- Dynamic formation of classes and study groups
- Performance evaluation methodologies and benchmarks

Meta Question

• Will we play or cede the space to others?

Data & Education: A Historical Perspective

- Readability Formulas (starting [Lorge 1939])
 - Coefficients of regression equations (e.g. over McCall-Crabbs Standard Test Lessons)

Flesch Reading Ease Score [17]	206.835	_	84.6	×	S/W	_	1.015	×	W/T	С	=	Number of words with
Flesch-Kincaid Grade Level [31]	-15.59	+	11.8	×	S/W	+	0.39	×	W/T			three syllables or more
Dale-Chall Grade Level [14]	14.862	_	11.42	×	D/W	+	0.0512	×	W/T	D	=	Number of words on the Dale Long List
Gunning Fog Index [23]			40	×	C/W	+	0.4	×	W/T	I.	_	Number of letters
SMOG Index [37]	3.0	+	$\sqrt{30}$	×	$\sqrt{C/T}$					s	_	Number of syllables
Coleman-Liau Index [10]	-15.8	+	5.88	×	L/W	_	29.59	×	T/W	T	=	Number of sentences
Automated Readability Index [46]	-21.43	+	4.71	×	L/W	+	0.50	×	W/T	W	=	Number of words

- Item Response Theory (starting 1950s, in use in ETS)
 1PL Model: P(θi) = exp(-(θi βj)) / (1 + exp(-(θi βj)))
- Intelligent Tutoring Systems (starting [Pressy 1924])
 - Adapt tutoring strategies based on student actions
 - Biennual ITS conferences starting 1988, Also AIED, EDM Confs.

References

(cited in Enriching Electronic Textbooks slide)

[AGK+10] Rakesh Agrawal, Sreenivas Gollapudi, Krishnaram Kenthapadi, Nitish Srivastava, Raja Velu. "<u>Enriching Textbooks Through Data Mining</u>". <u>DEV 2010</u>.

[AGK+11a] Rakesh Agrawal, Sreenivas Gollapudi, Anitha Kannan, Krishnaram Kenthapadi. "<u>Identifying Enrichment Candidates in Textbooks</u>". <u>WWW 2011</u>.

[AGK+11b] Rakesh Agrawal, Sreenivas Gollapudi, Anitha Kannan, Krishnaram Kenthapadi. "<u>Enriching Textbooks With Images</u>". <u>CIKM 2011</u>.

[ACG+12] Rakesh Agrawal, Sunandan Chakraborty, Sreenivas Gollapudi, Anitha Kannan, Krishnaram Kenthapadi. "<u>Empowering Authors to Diagnose Comprehension Burden in</u> <u>Textbooks</u>". <u>KDD 2012</u>.

[AGK+13] Rakesh Agrawal, Sreenivas Gollapudi, Anitha Kannan, Krishnaram Kenthapadi. "<u>Studying</u> <u>from Electronic Textbooks</u>". <u>CIKM 2013</u>.

[ACG+13] Rakesh Agrawal, Maria Christoforaki, Sreenivas Gollapudi, Anitha Kannan, Krishnaram Kenthapadi, Adith Swaminathan. "<u>Augmenting Textbooks with Videos</u>". Working Paper. 2013.

