

Thoughts on Systems for Large Datasets:

Problems and Opportunities

Jeff Dean Google Senior Fellow jeff@google.com

Many of the systems mentioned in this talk represent joint work with many, many colleagues at Google

Areas I Wish New Grads Knew More About

- Ability to do back-of-the-envelope calculations and quickly evaluate many alternative designs
- Understanding the importance of locality at all levels (caches & memory systems, disk I/O, cross-machine, geographic regions, etc.)
- Low-level encoding and compression schemes and their tradeoffs
- More math and statistics knowledge
 - –e.g. use of randomized, probabilistic algorithms in distributed systems

Overview

- A collection of problems I believe are difficult/interesting:
 - For some, significant work has been done/published
 - Others are less explored
- Not meant to be exhaustive catalog of problems/areas
 I care (and Google cares) about many other problems, too!
- Roughly in two main areas:
 - issues that arise in building systems that store and manipulate large datasets
 - automatically extracting higher-level information from raw data
- Feedback and suggestions are welcome!

Programming Models

- Large datasets already require use of large numbers of cores and machines for analyses
- Moore's law is now scaling # cores instead of MHz
 parallelism likely to be even more important in the future
- Parallelism is key to getting good performance out of large-scale systems

Distributed Systems Abstractions

- High-level tools/languages/abstractions for building distributed systems
 - e.g. For batch processing, MapReduce handles parallelization, load balancing, fault tolerance, I/O scheduling automatically within a simple programming model
- Challenge: Are there unifying abstractions for other kinds of distributed systems problems?
 - e.g. systems for handling interactive requests & dealing with intra-operation parallelism
 - load balancing, fault-tolerance, service location & request distribution, ...
 - systems that seamlessly divide, expand, and contract processing subsystems?

Building Applications on top of Weakly Consistent Storage Systems

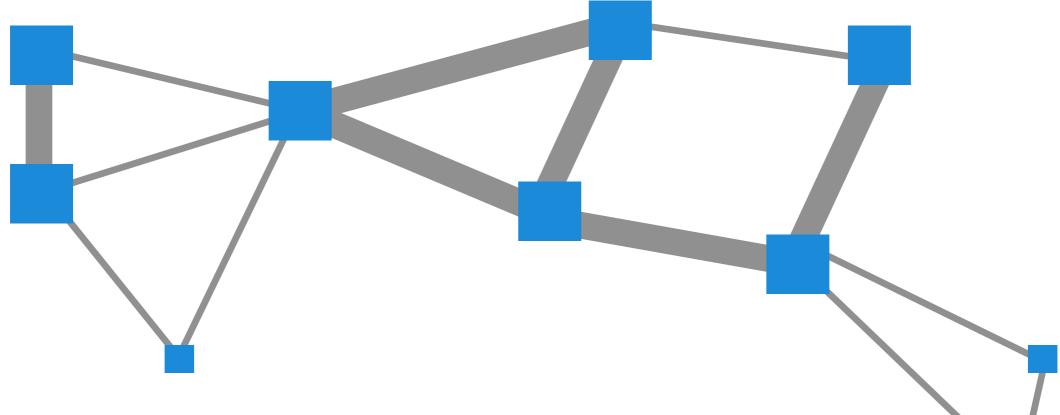
- Many applications need state replicated across a wide area – For reliability and availability
- Two main choices:
 - -consistent operations (e.g. use Paxos)
 - often imposes additional latency for common case
 - inconsistent operations
 - better performance/availability, but apps harder to write and reason about in this model
- Many apps need to use a mix of both of these:
 - e.g. Gmail: marking a message as read is asynchronous, sending a message is a heavier-weight consistent operation

Building Applications on top of Weakly Consistent Storage Systems

- Challenge: General model of consistency choices, explained and codified
 - ideally would have one or more "knobs" controlling performance vs. consistency
 - "knob" would provide easy-to-understand tradeoffs
- Challenge: Easy-to-use abstractions for resolving conflicting updates to multiple versions of a piece of state
 - Useful for reconciling client state with servers after disconnected operation
 - Also useful for reconciling replicated state in different data centers after repairing a network partition

Design of Very Large-Scale Computer Systems

 Future scale: ~10⁶ to 10⁷ machines, spread at 100s to 1000s of locations around the world, ~10⁹ client machines



- -zones of semi-autonomous control
- consistency after disconnected operation
- -power adaptivity

Adaptivity and Self-Tuning in World-Wide Systems

- Challenge: automatic, dynamic world-wide placement of data & computation to minimize latency and/or cost, given constraints on:
 - bandwidth
 - packet loss
 - power
 - resource usage
 - failure modes
 - -----
- Users specify high-level desires:

"99%ile latency for accessing this data should be <50ms" "Store this data on at least 2 disks in EU, 2 in U.S. & 1 in Asia"

ACLs in Information Retrieval Systems

- Retrieval systems with mix of private, semi-private, widely shared and public documents
 - e.g. e-mail vs. shared doc among 10 people vs. messages in group with 100,000 members vs. public web pages
- Challenge: building retrieval systems that efficiently deal with ACLs that vary widely in size
 - best solution for doc shared with 10 people is different than for doc shared with the world
 - -sharing patterns of a document might change over time

Automatic Construction of Efficient IR Systems

- Currently use several retrieval systems
 - e.g. one system for sub-second update latencies, one for very large # of documents but daily updates, ...
 - common interfaces, but very different implementations primarily for efficiency
 - works well, but lots of effort to build, maintain and extend different systems
- Challenge: can we have a single parameterizable system that automatically constructs efficient retrieval system based on these parameters?

Information Extraction from Semi-structured Data

- Data with clearly labelled semantic meaning is a tiny fraction of all the data in the world
- But there's lots semi-structured data
 - -books & web pages with tables, data behind forms, ...
- Challenge: algorithms/techniques for improved extraction of structured information from unstructured/ semi-structured sources
 - -noisy data, but lots of redundancy
 - want to be able to correlate/combine/aggregate info from different sources

Learning from Raw Data

Large datasets of very raw data

-images, videos, user activity logs, genetics, other sciences, ...

- Want to answer high-level questions:
 - "what is a user in this situation likely to do?"
 - "which users are likely to buy items for more than \$1000"
 - "give me a textual summary of this video"
 - "what are the most likely genetic markers of this disease, given genetic data and medical records of millions of people?"
 - "find a picture of three scarlet macaws in a tree"
- Need systems that automatically build high level representations and abstractions from the raw data
- Want to generalize from one task to others

Broadly Applicable

- We have been building systems that apply these techniques in the following domains:
- image recognition, object detection, video processing
- speech recognition
- language modeling
- user activity prediction
- neuroscience
- ad system optimization
- language understanding

Plenty of Data

- Text: trillions of words of English + other languages
- Visual: billions of images and videos
- Audio: spoken queries, audio portion of video data, ...
- User activity: queries, result page clicks, map requests, etc.
- Knowledge graph: billions of labelled relation triples
- Biology and Health: genetic data, health care records, ...
- Physical sciences: physics, astronomy, ...

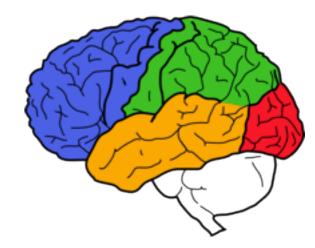


Image Models

stone wall [0.95, web]

judo [0.96, <u>web</u>]

tractor [0.91, web]

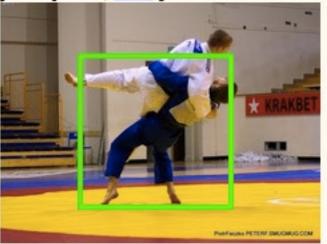
dishwasher [0.91, web]

judo [0.92, <u>web</u>]

tractor [0.91, web]

car show [0.99, web]

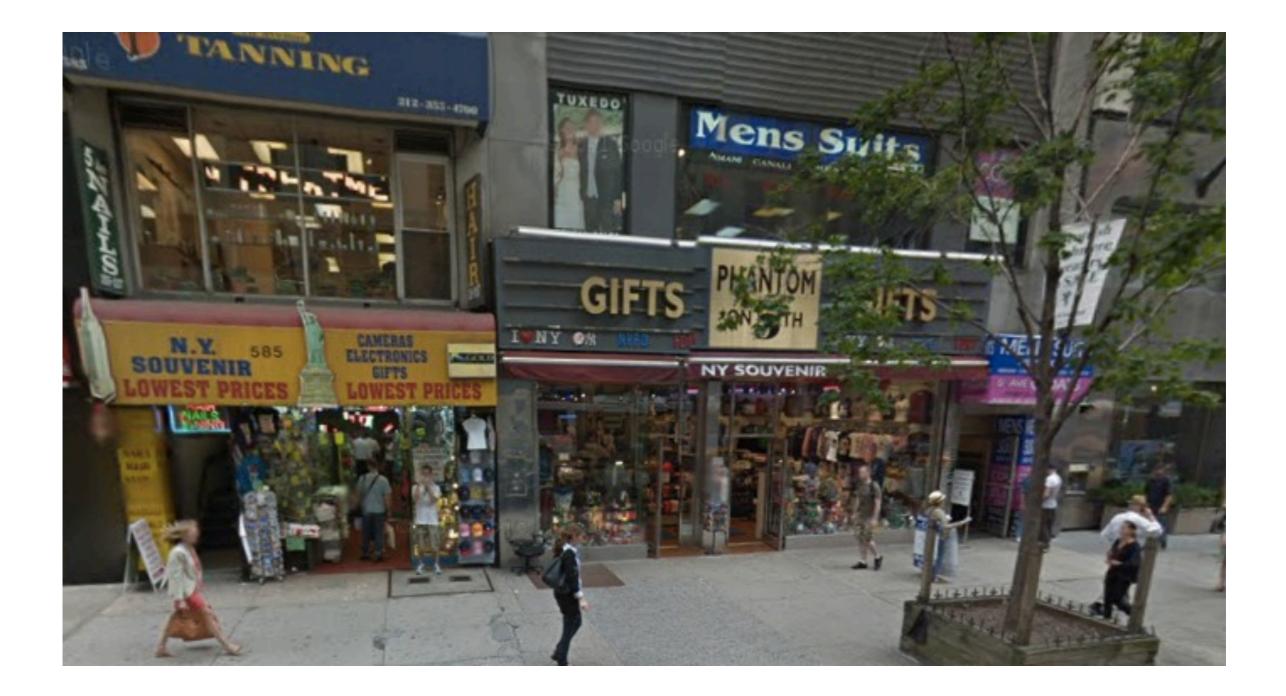
judo [0.91, <u>web</u>]



tractor [0.94, web]

What are these numbers?

What are all these words?



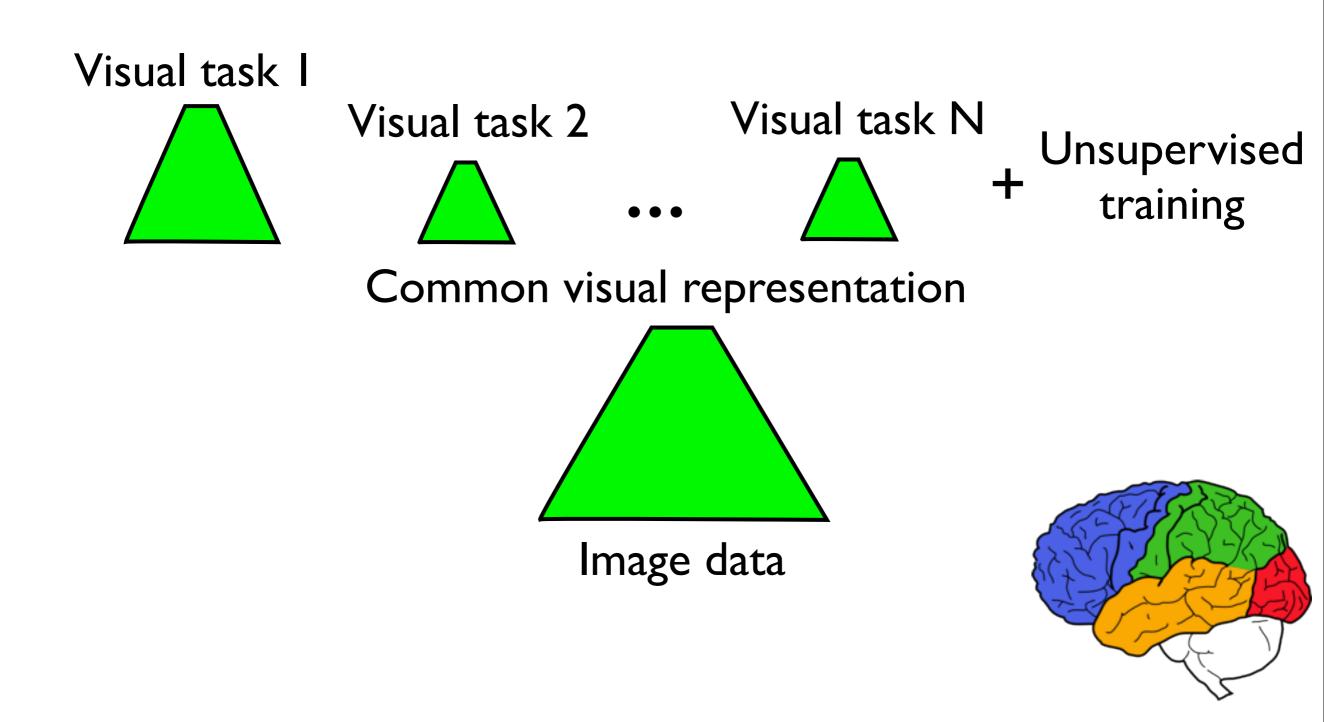
How about these words?

Sept 26/94 My dear takkel arrived at Tweeton yesterday & found your letter awaiting my assistal, I then made straight for my custome: so that I could spend an hour or so at St Seters Church which I did up to within 10 minutes of service being held when had to dear out, but at anyrate shave traced the registers back as far as 1433 + overleaf you will find a copy of as many Penpetons as I happened to come accoss. I have only noticed

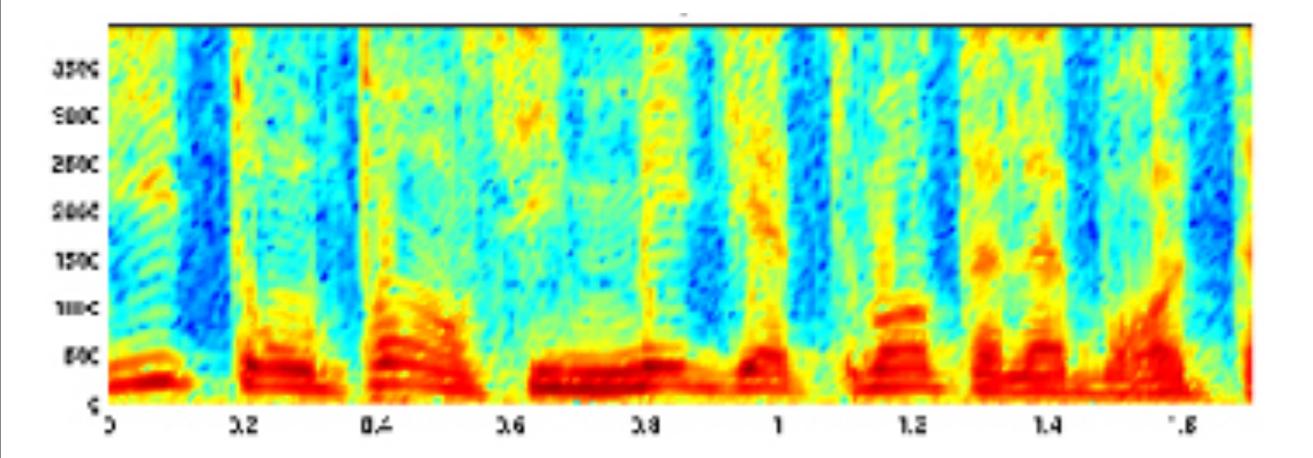
How about these words?

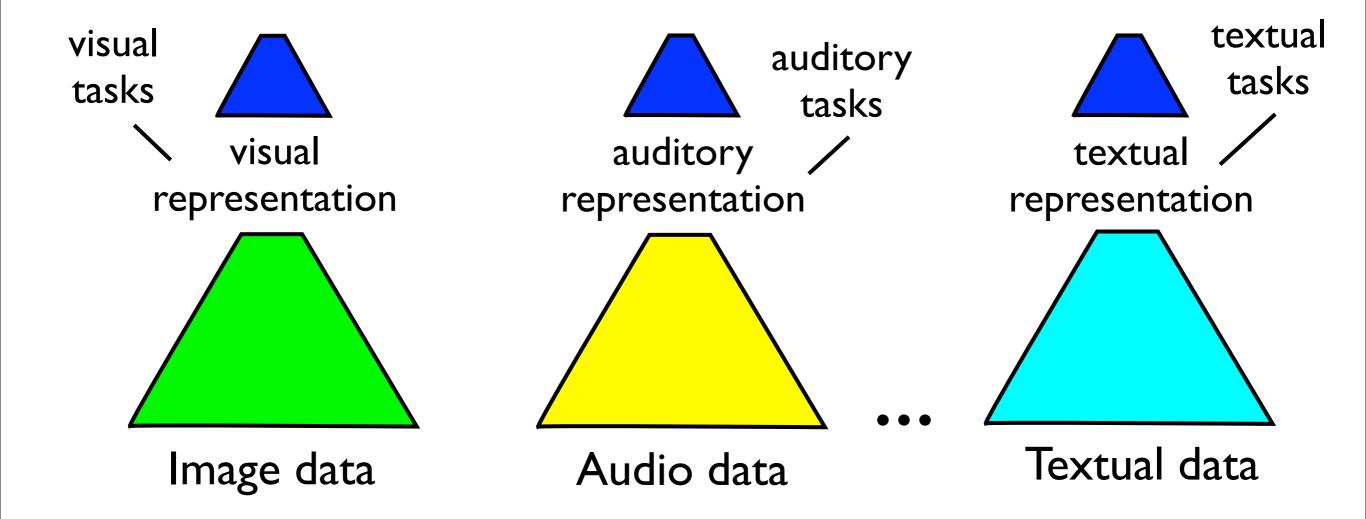
Sept 26/94 My dear takker arrived at Tweeton yesterday & found your letter awaiting my assistal, I then made straight for my custome: so that I could spend an hour or so at St Seter Church which I did up to within 10 minutes of service being held when had to dear out, but at anyrate shave traced the registers back as far as 1433 + overleaf you will find a copy of as many Simptons as I happened to come accoss, I have may noticed

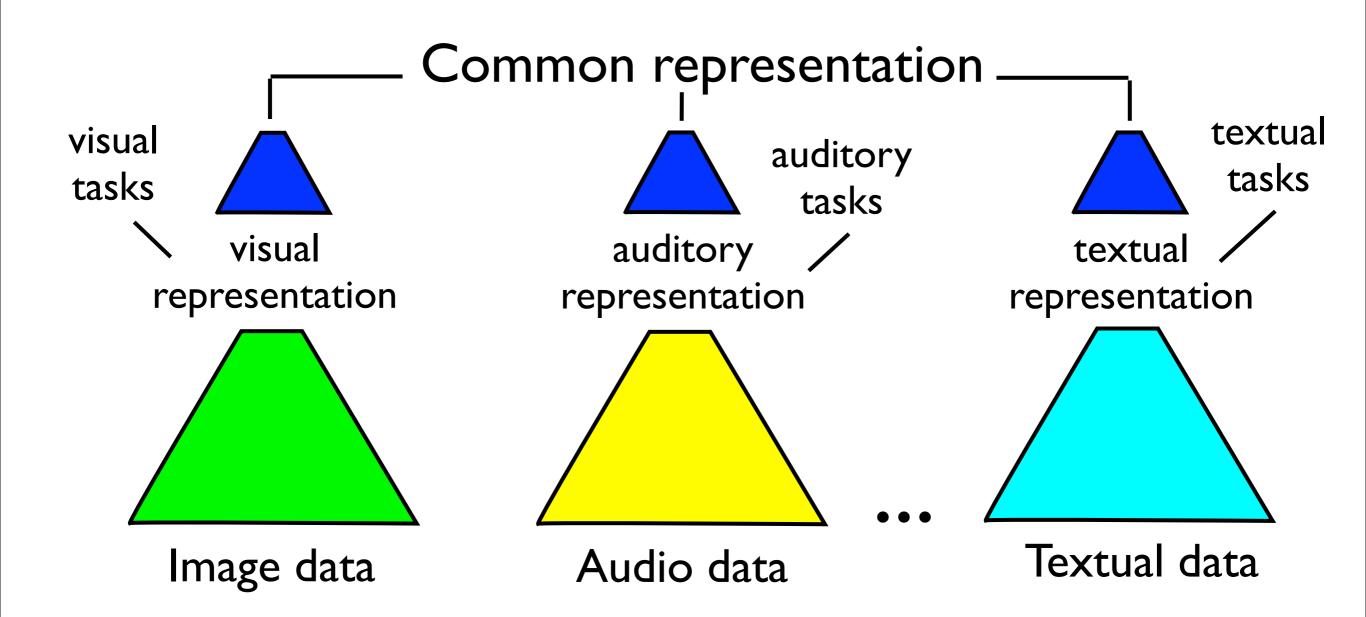
เป็นมนุษย์สุดประเสริฐเลิศคุณค่า กว่าบรรคาฝูงสัตว์เคร้อฉาน องฝ่าฟันพัฒนาวิชาการ ອຍ່າລ້າงผลาญฤๅเข่นฆ่าบีฑาใคร ไม่ถือโทษโกรธแช่งซัคฮิคฮัคค่า หัคอภัยเหมือนก็ฆ่าอัชณาสัย ປฏิบัติประพฤติกฏกำหนดใจ พูดอาให้อะ ๆ อา ๆ นาฟังเอยฯ

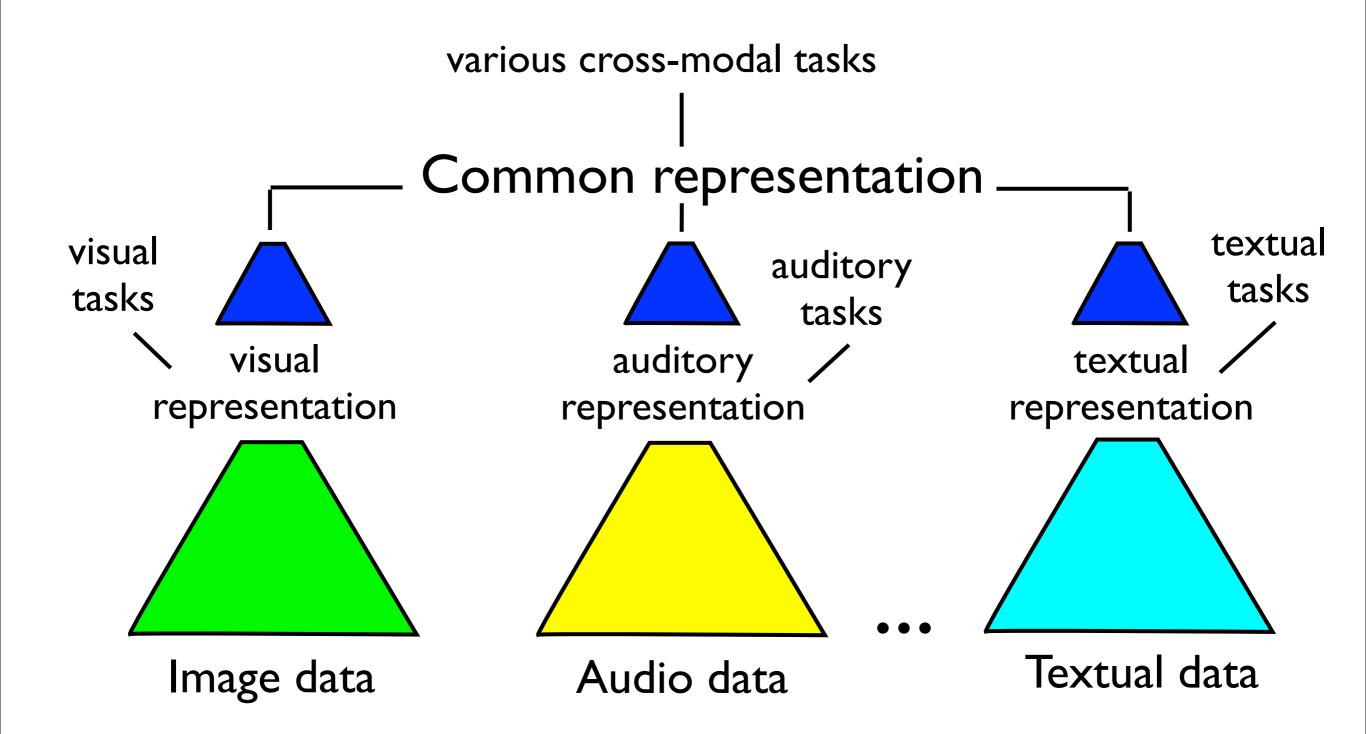


What is being said?



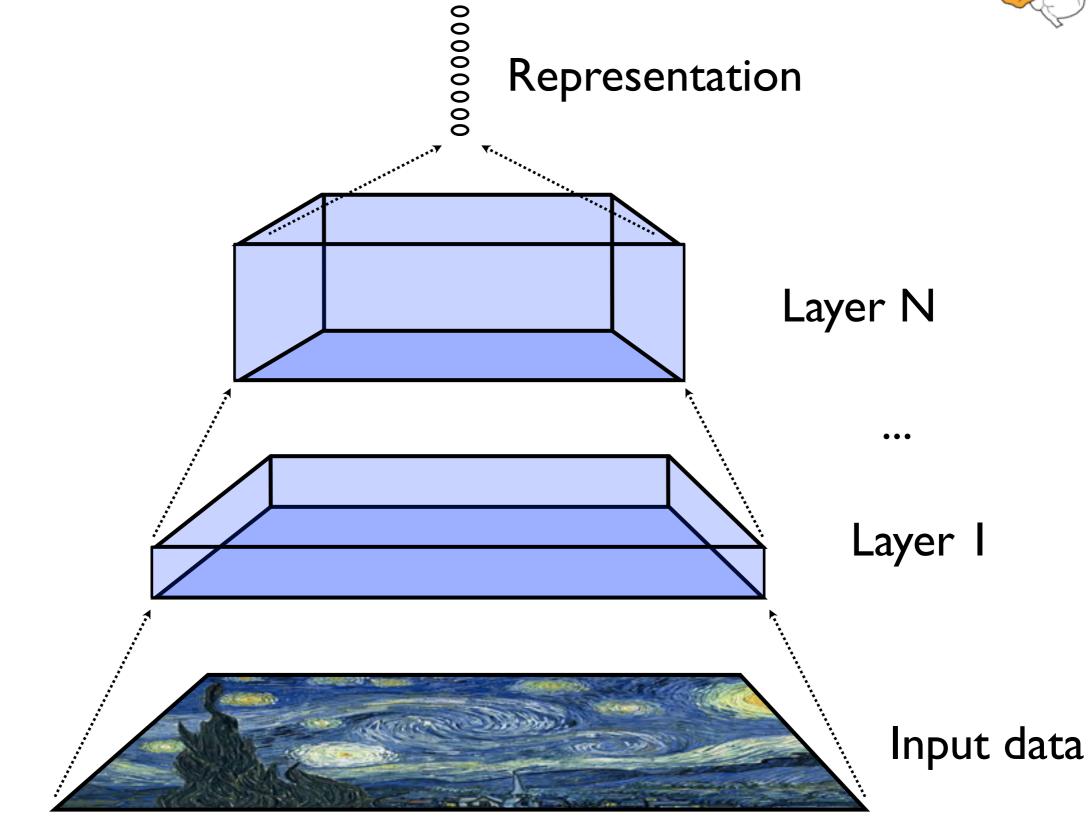


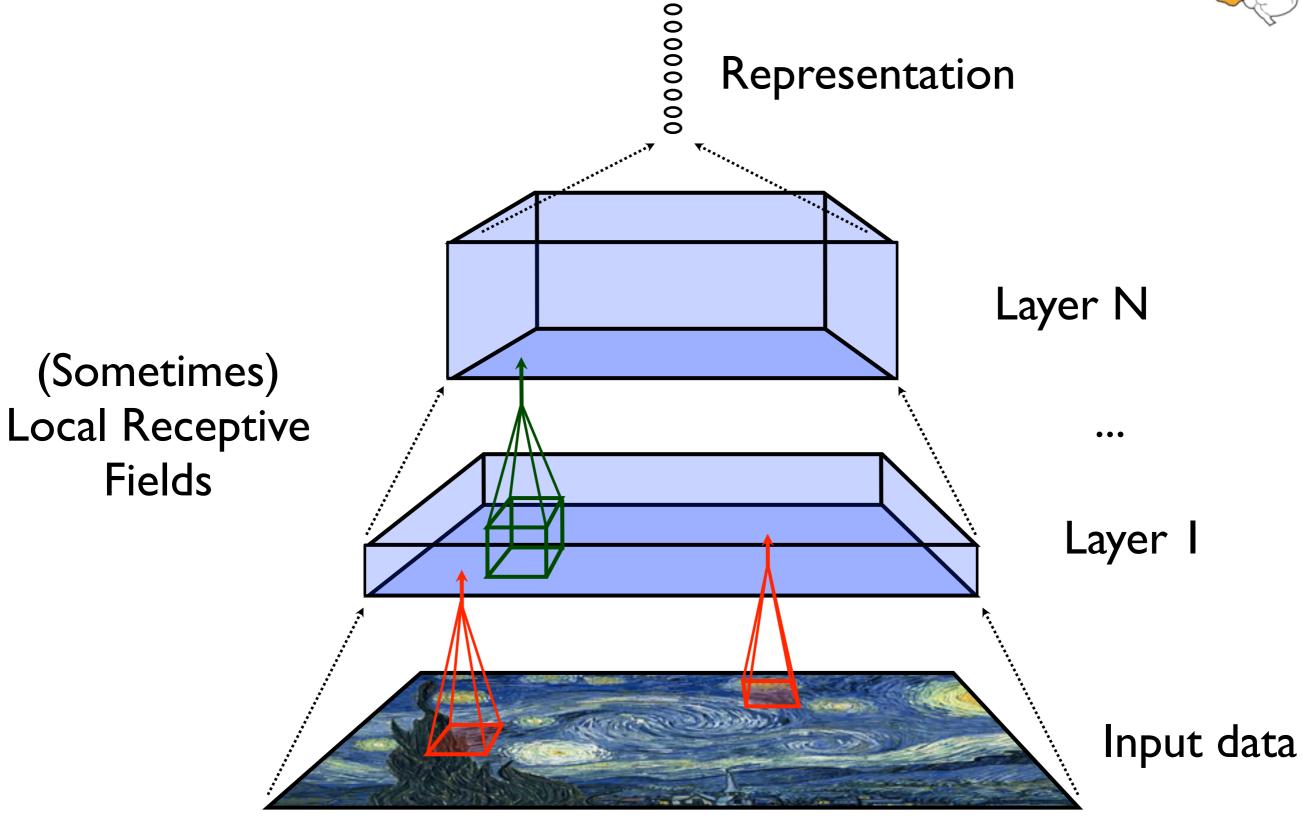


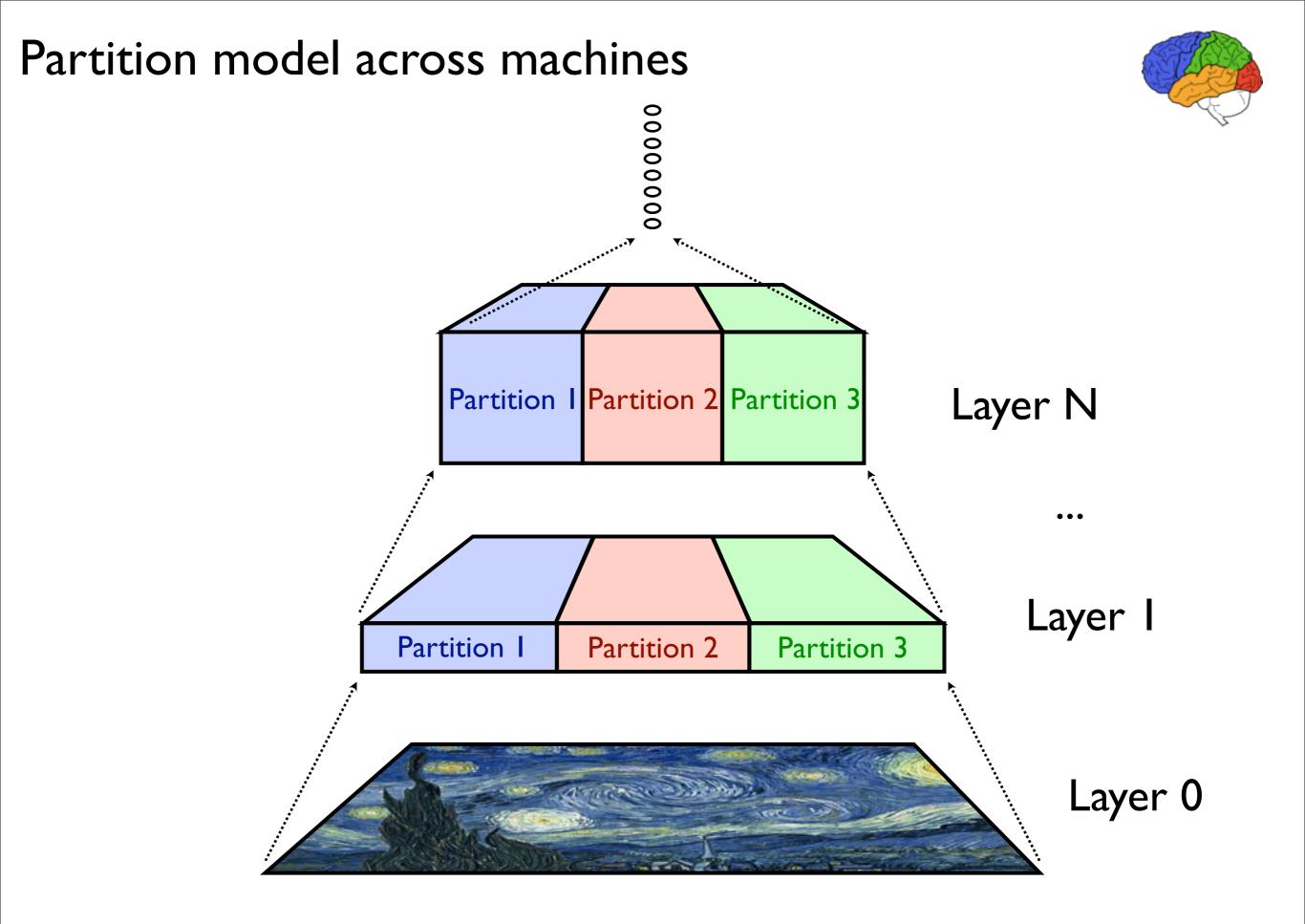


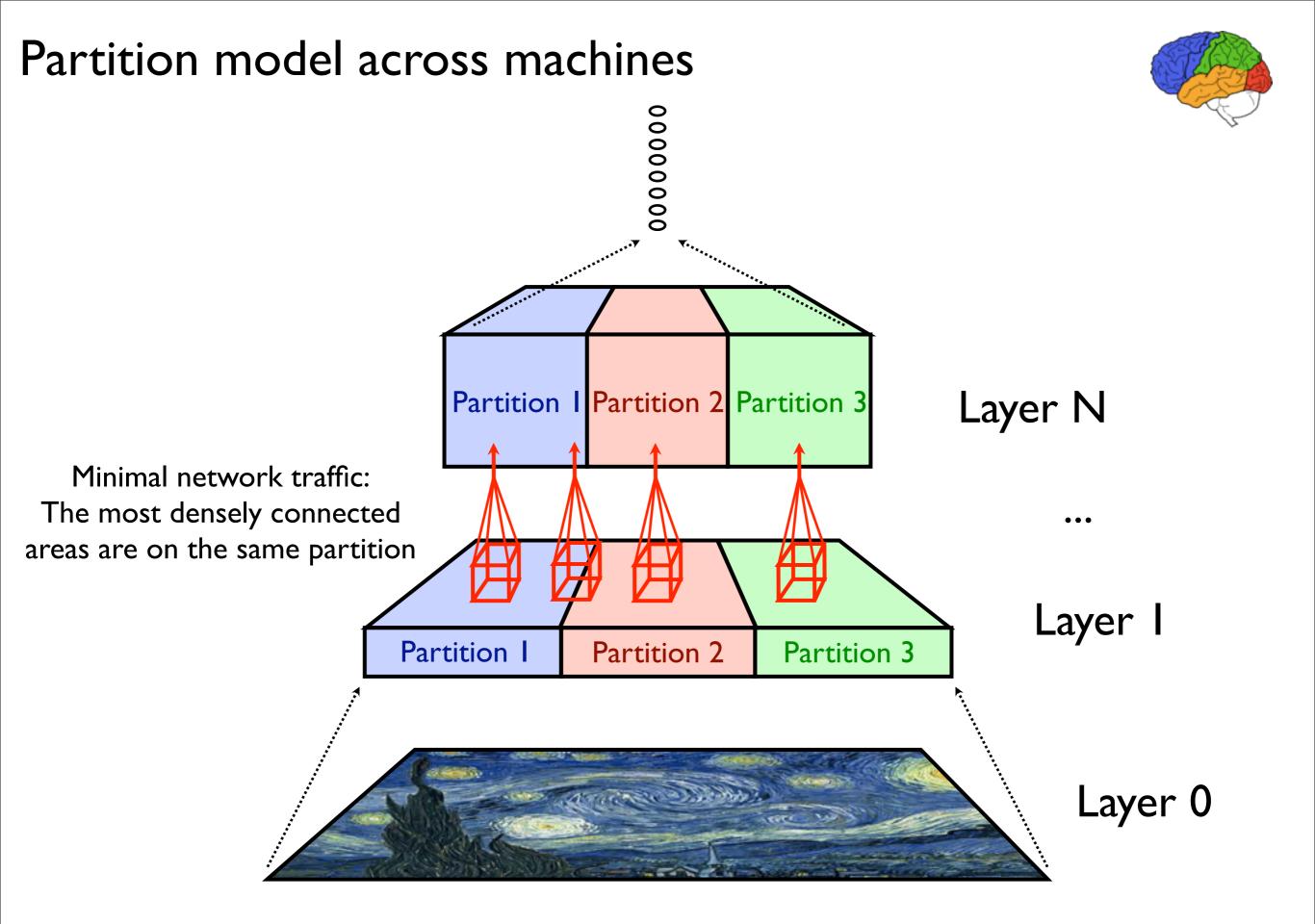
One Key Approach: Deep Learning

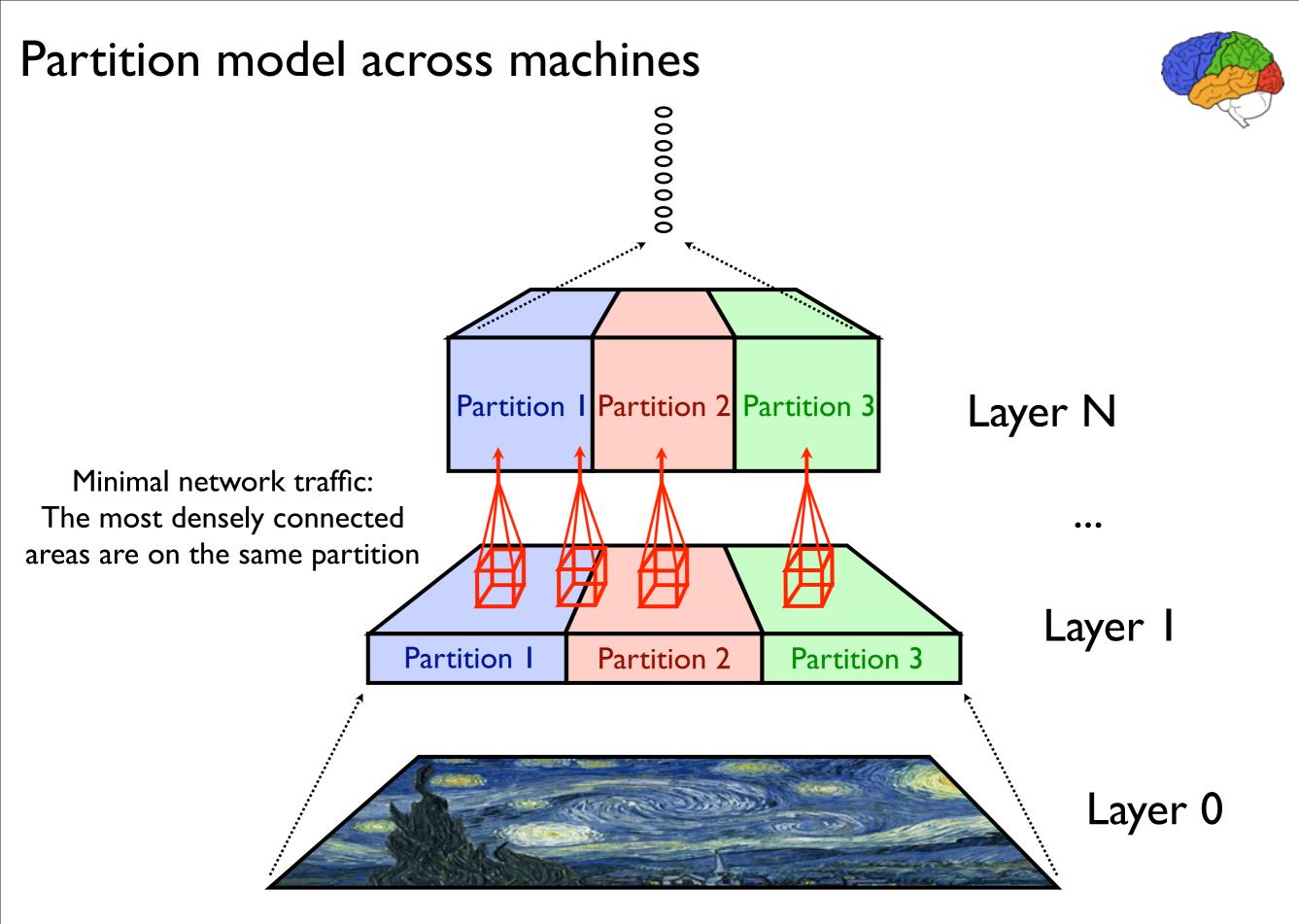
- Algorithmic approach
 - automatically learn high-level representations from raw data
 - can learn from both labeled and unlabeled data
- Recent academic deep learning results improve on state-ofthe-art in many areas (Hinton, Ng, Bengio, LeCun, et al.):
 - images, video, speech, NLP, ...
 - ... using modest model sizes (<= ~50M parameters)
- We want to scale this to much bigger models & datasets
 - general approach: parallelize at many levels











One replica of our biggest model: 144 machines, ~2300 cores

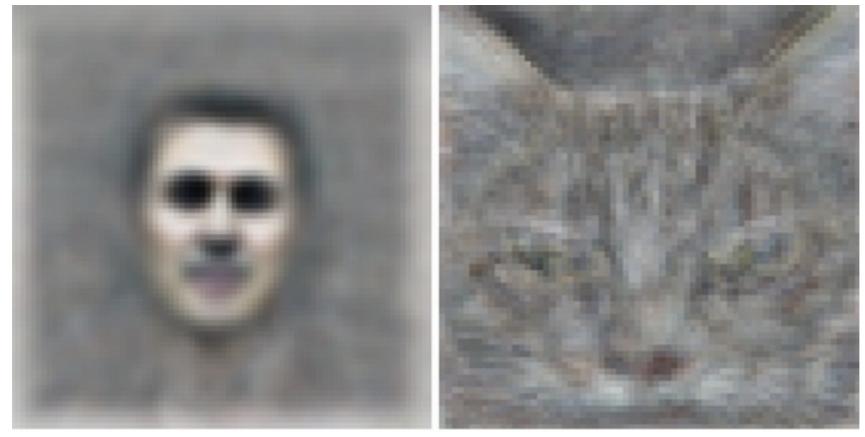
- Always: unlabeled data >> labeled data
- Experiment: unsupervised training on 10M random YouTube frames
- Trained 9 layer model with local connections
 Visualization of optimal stimuli for two different neurons in top layer:

- Always: unlabeled data >> labeled data
- Experiment: unsupervised training on 10M random YouTube frames
- Trained 9 layer model with local connections

Visualization of optimal stimuli for two different neurons in top layer:

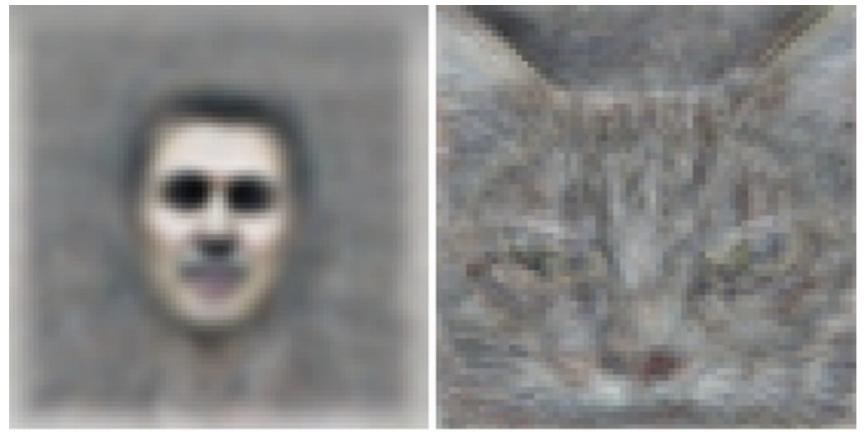
- Always: unlabeled data >> labeled data
- Experiment: unsupervised training on 10M random YouTube frames
- Trained 9 layer model with local connections

Visualization of optimal stimuli for two different neurons in top layer:

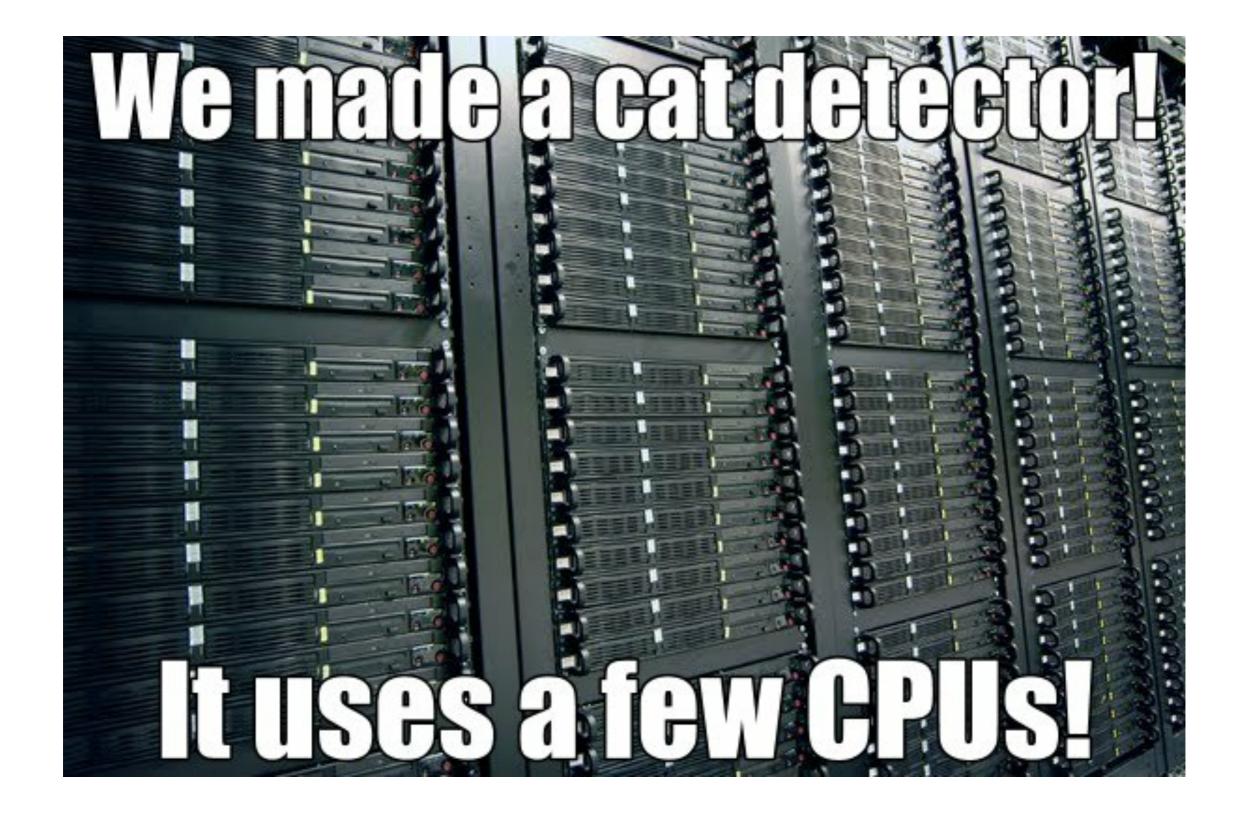


- Always: unlabeled data >> labeled data
- Experiment: unsupervised training on 10M random YouTube frames
- Trained 9 layer model with local connections

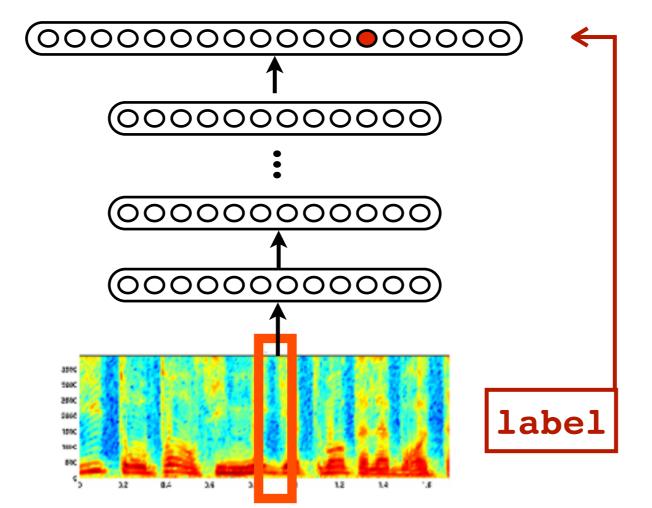
Visualization of optimal stimuli for two different neurons in top layer:



Le, Ranzato, Monga, Devin, Chen, Corrado, Dean, & Ng. Building High-Level Features Using Large Scale Unsupervised Learning, ICML 2012.



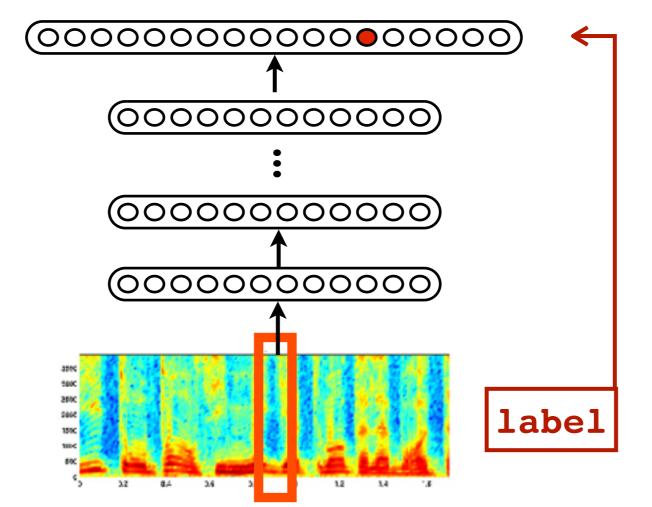
Acoustic Modeling for Speech Recognition



Close collaboration with Google Speech team

Trained in <5 days on cluster of 800 machines

Acoustic Modeling for Speech Recognition

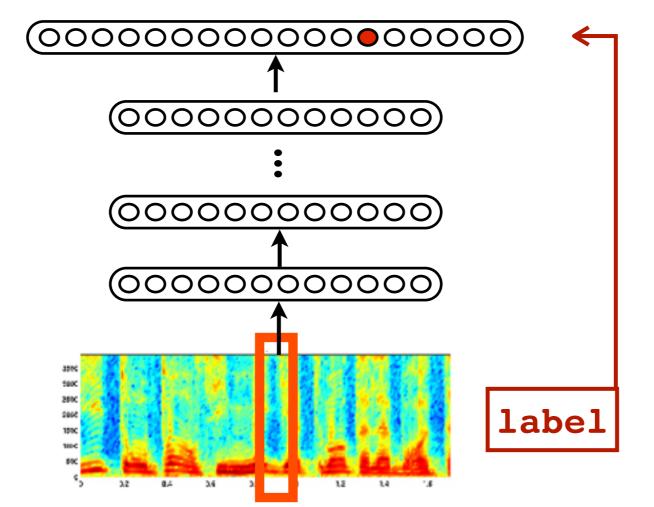


Close collaboration with Google Speech team

Trained in <5 days on cluster of 800 machines

30% reduction in Word Error Rate for English ("biggest single improvement in 20 years of speech research")

Acoustic Modeling for Speech Recognition

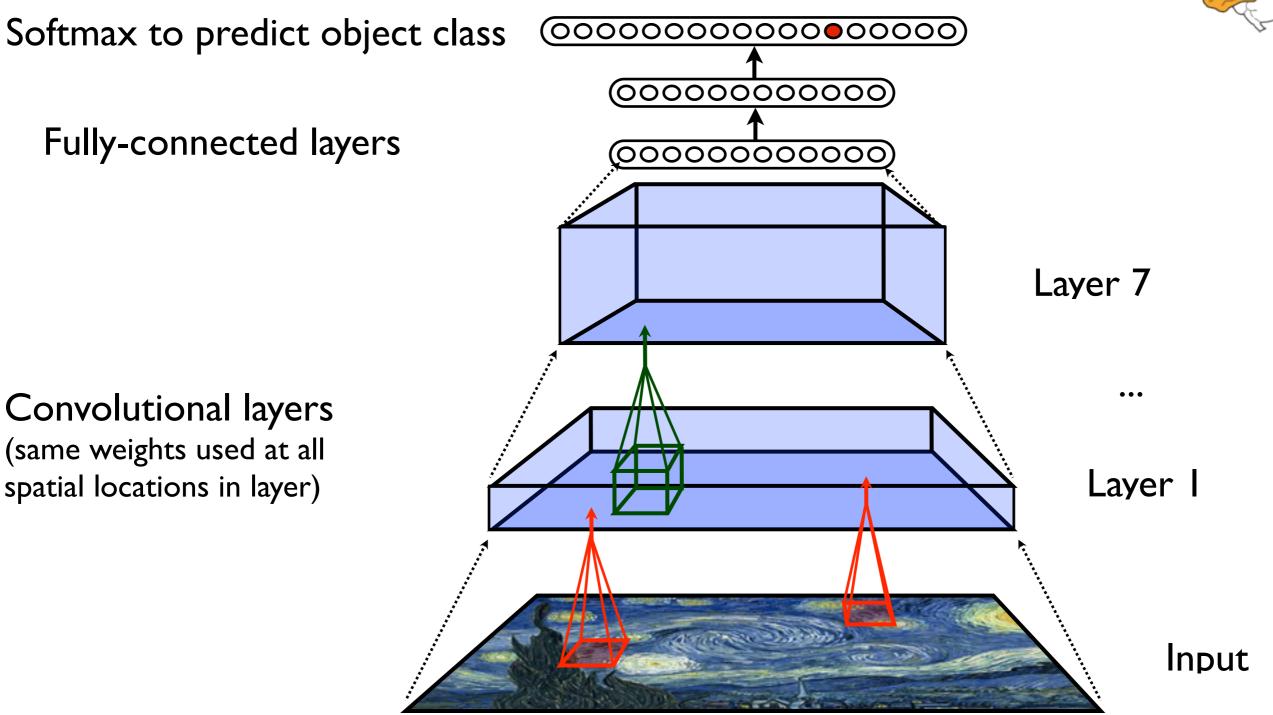


Close collaboration with Google Speech team

Trained in <5 days on cluster of 800 machines

30% reduction in Word Error Rate for English ("biggest single improvement in 20 years of speech research") Launched at time of Jellybean release of Android

Convolutional Models for Object Recognition

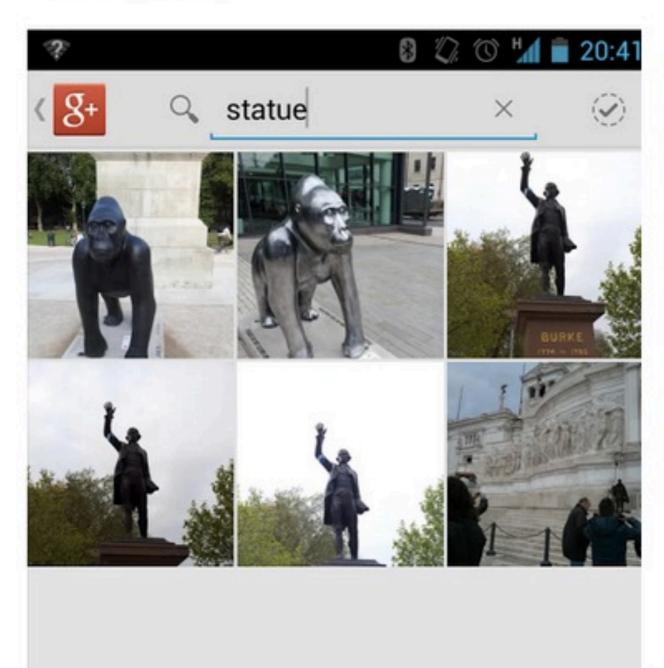


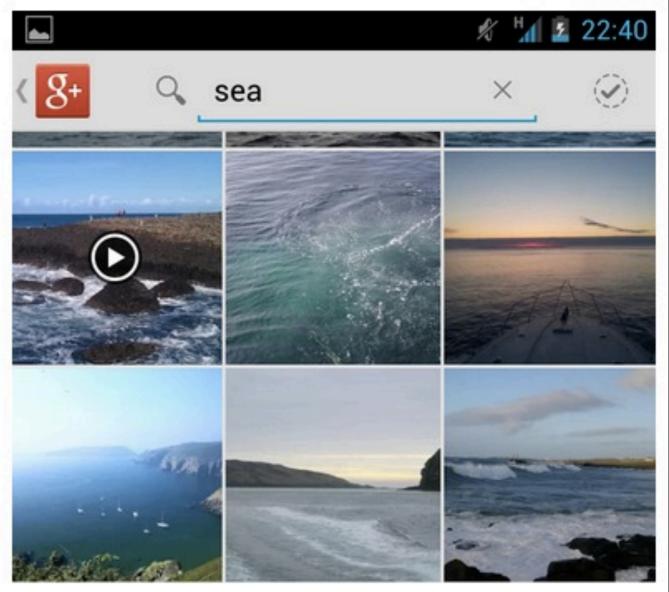
Basic architecture developed by Krizhevsky, Sutskever & Hinton (all now at Google) Convolutional nets developed by Yann LeCun (of NYU)

Wow.

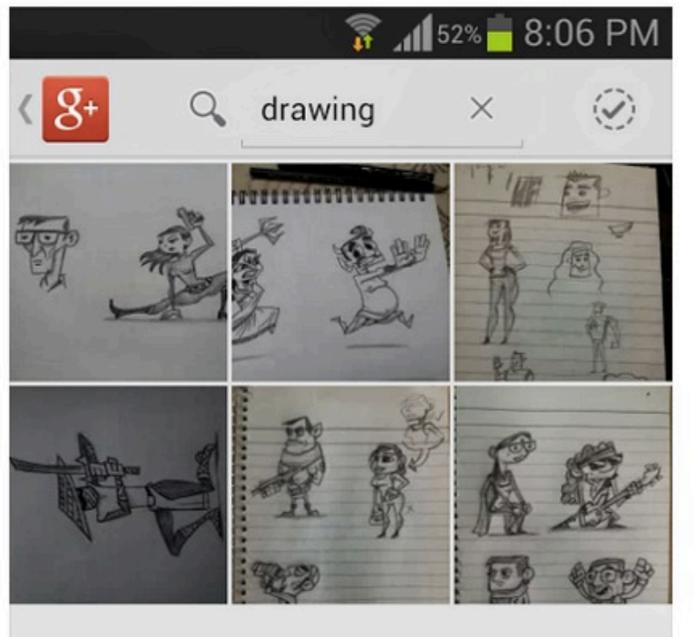
The new Google plus photo search is a bit insane.

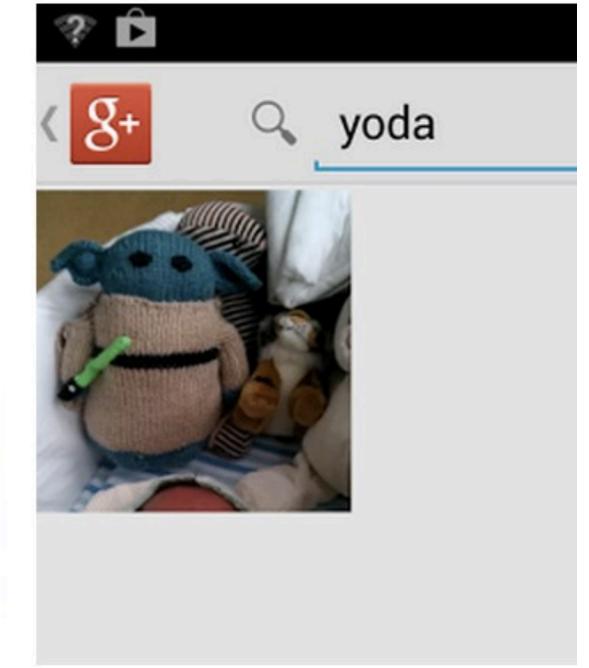
I didn't tag those... :)





Google Plus photo search is awesome. Searched with keyword 'Drawing' to find all my scribbles at once :D





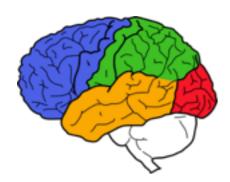
Thursday, January 23, 14

ANO MOTOR ENGIN ALL MAKES AND MODELS 8 REGATTA ROAD FIVE DOCK 9745 3173

LATEST DIAGNOSTIC EQUIPMENT = REGO INSPECTIONS = Factory Trained Technicians

- 100

Thursday, January 23, 14

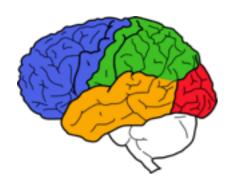


Recent results from ICDAR 2013 Competition for Task 2.3: "Reading Text in Scene Images"

TABLE VIII.RANKING OF SUBMITTED METHODS TO TASK 2.3

	Total Edit	Correctly Recognised
Method	Distance	Words (%)
PhotoOCR	122.7	82.83
PicRead [27]	332.4	57.99
NESP [19]	360.1	64.20
PLT [18]	392.1	62.37
MAPS [17]	421.8	62.74
Feild's Method	422.1	47.95
PIONEER [28], [29]	479.8	53.70
Baseline	539.0	45.30
TextSpotter [20], [21], [22]	606.3	26.85

http://dag.cvc.uab.es/icdar2013competition/

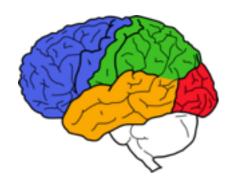


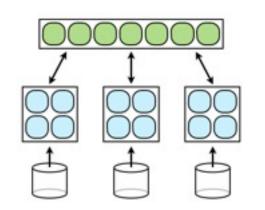
Recent results from ICDAR 2013 Competition for Task 2.3: "Reading Text in Scene Images"

TABLE VIII.RANKING OF SUBMITTED METHODS TO TASK 2.3

Method	Total Edit Distance	Correctly Recognised Words (%)
PhotoOCR	122.7	82.83
PicRead [27]	332.4	57.99
NESP [19]	360.1	64.20
PLT [18]	392.1	62.37
MAPS [17]	421.8	62.74
Feild's Method	422.1	47.95
PIONEER [28], [29]	479.8	53.70
Baseline	539.0	45.30
TextSpotter [20], [21], [22]	606.3	26.85

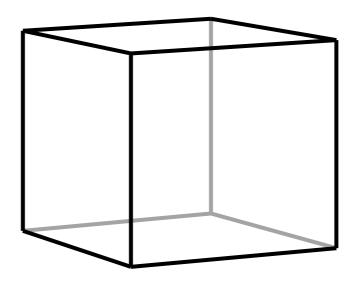
http://dag.cvc.uab.es/icdar2013competition/



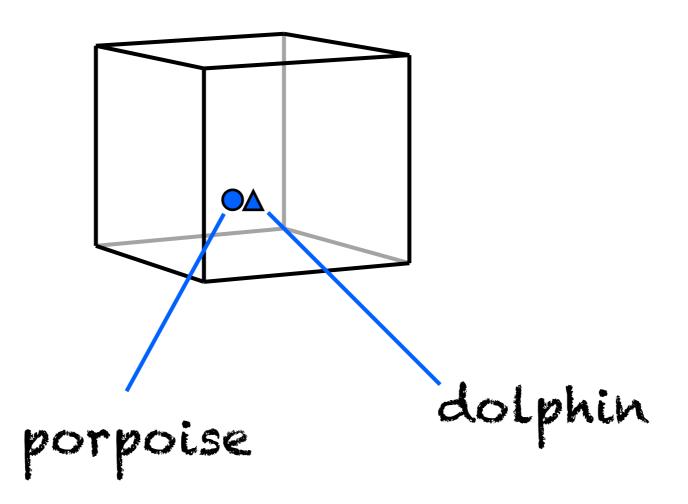


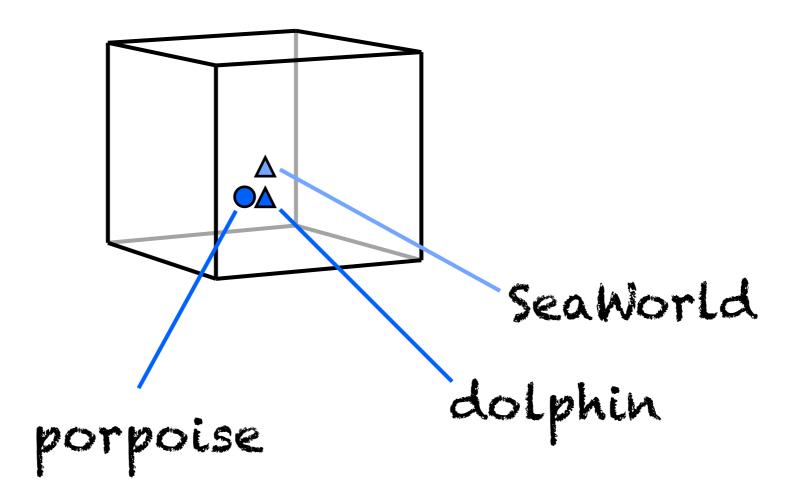
How about text-related tasks?

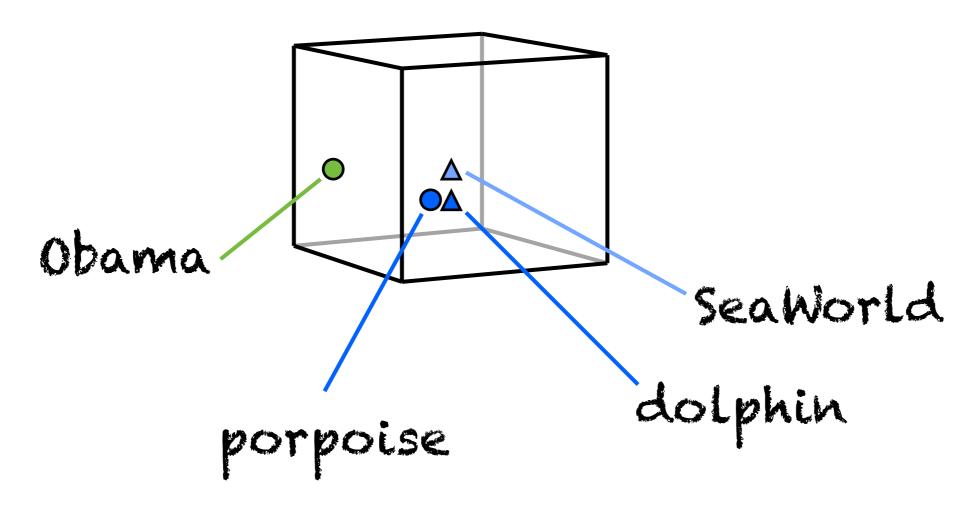
Thursday, January 23, 14

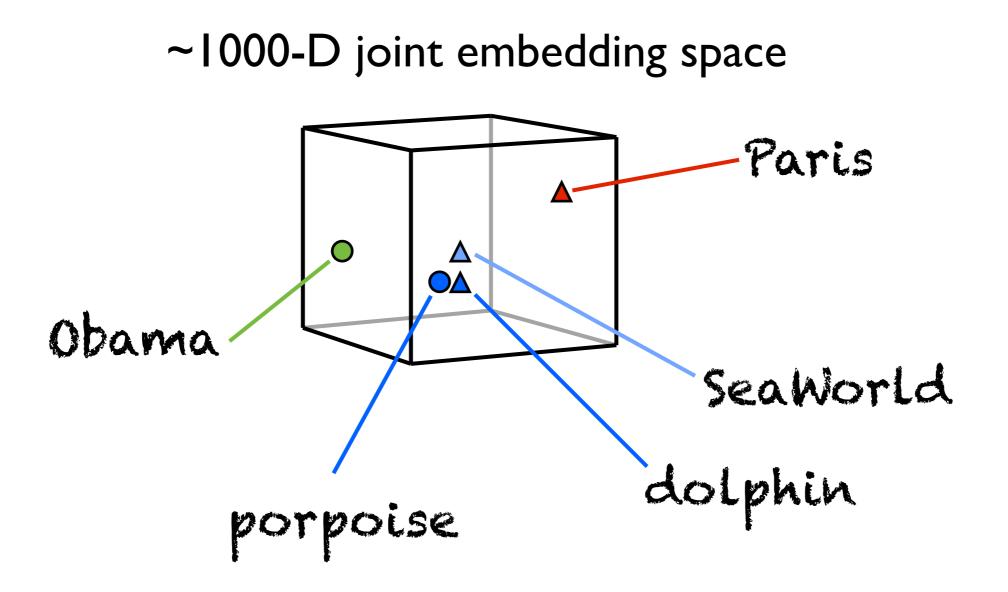


dolphin

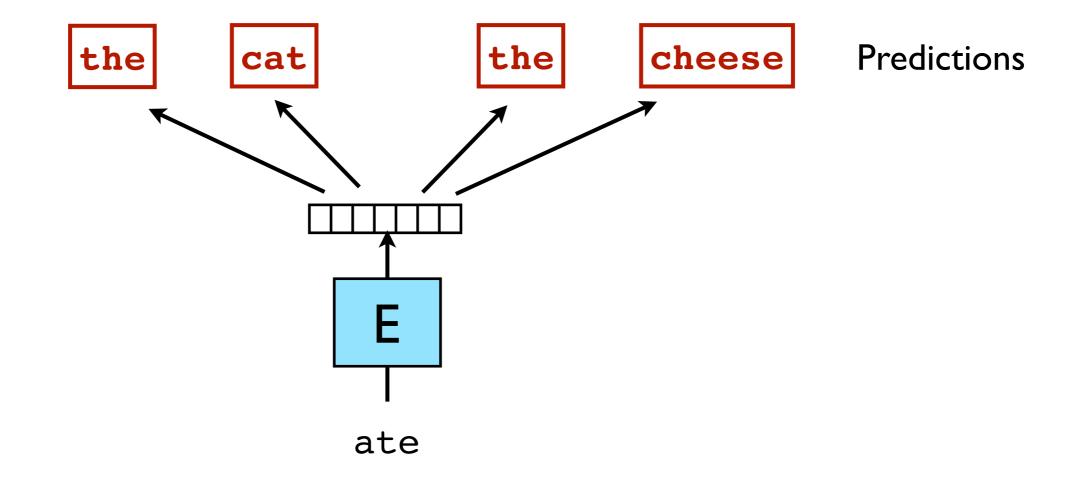




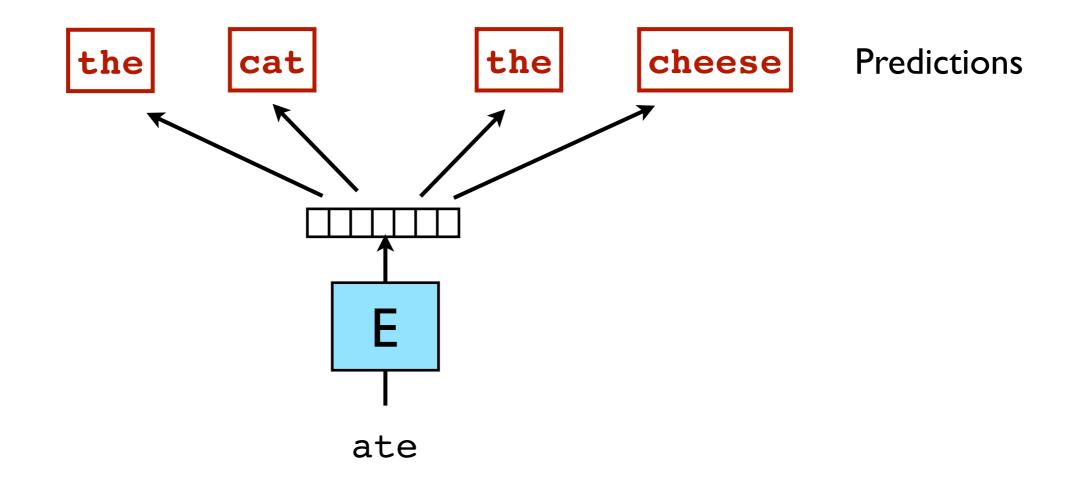




Skip-Gram Model



Skip-Gram Model



Mikolov, Chen, Corrado and Dean. Efficient Estimation of Word Representations in Vector Space, <u>http://arxiv.org/abs/1301.3781</u>

Embedding sparse tokens in an N-dimensional space

Example: 50-D embedding trained for semantic similarity

Cluster 1: apple

Cluster 1

Columns 🛟 (Row filter (regexp))			
Id	Distance [†]	Adjust	Word
11114	0.000000	Remove	apple
5026	0.652580	Add	fruit
14080	0.699192	Add	apples
48657	0.717818	Add	melon
28498	0.722390	Add	peach
39795	0.729893	Add	blueberry
35570	0.730500	Add	berry
25974	0.739561	Add	strawberry
46156	0.745343	Add	pecan
11907	0.756422	Add	potato
33847	0.759111	Add	pear
30895	0.763317	Add	mango
17848	0.768230	Add	pumpkin
39133	0.770143	Add	almond
14395	0.773105	Add	tomato
18163	0.782610	Add	onion
10470	0.782994	Add	pie
3023	0.787229	Add	tree
20340	0.793602	Add	bean
34968	0.794979	Add	watermelon

Embedding sparse tokens in an N-dimensional space

Example: 50-D embedding trained for semantic similarity

Cluster 1: apple

Cluster 1

Column	s 🛟 Ro	w filter (rege	exp)
Id	Distance [†]	Adjust	Word
11114	0.000000	Remove	apple
5026	0.652580	Add	fruit
14080	0.699192	Add	apples
48657	0.717818	Add	melon
28498	0.722390	Add	peach
39795	0.729893	Add	blueberry
35570	0.730500	Add	berry
25974	0.739561	Add	strawberry
46156	0.745343	Add	pecan
11907	0.756422	Add	potato
33847	0.759111	Add	pear
30895	0.763317	Add	mango
17848	0.768230	Add	pumpkin
39133	0.770143	Add	almond
14395	0.773105	Add	tomato
18163	0.782610	Add	onion
10470	0.782994	Add	pie
3023	0.787229	Add	tree
20340	0.793602	Add	bean
34968	0.794979	Add	watermelon

Cluster 1:	stab	
Cluster 1		
Columns	Row filter	
Id Di	stones A din	

Column	s 🗘 (Ro	w filter (rege	exp)
Id	Distance [†]	Adjust	Word
14979	0.000000	Remove	stab
7728	0.868853	Add	punch
469	0.909304	Add	shot
12820	0.909750	Add	thrust
8934	0.939908	Add	shell
10880	0.951466	Add	hammer
6975	0.951679	Add	bullet
1848	0.962053	Add	push
10888	0.962319	Add	eyed
718	0.965448	Add	hand
5865	0.966663	Add	grab
4611	0.967574	Add	swing
302	0.975696	Add	hit
869	0.976967	Add	force
1597	0.977625	Add	attempt
5977	0.978384	Add	finger
6162	0.978776	Add	knife
3434	0.980028	Add	sharp
1504	0.980160	Add	struck
39157	0.980219	Add	slug

Embedding sparse tokens in an N-dimensional space

Example: 50-D embedding trained for semantic similarity

Cluster 1: apple

Cluster 1

Columns 🔷 (Row filter (regexp)				
Id	Distance †	Adjust	Word	
11114	0.000000	Remove	apple	
5026	0.652580	Add	fruit	
14080	0.699192	Add	apples	
48657	0.717818	Add	melon	
28498	0.722390	Add	peach	
39795	0.729893	Add	blueberry	
35570	0.730500	Add	berry	
25974	0.739561	Add	strawberry	
46156	0.745343	Add	pecan	
11907	0.756422	Add	potato	
33847	0.759111	Add	pear	
30895	0.763317	Add	mango	
17848	0.768230	Add	pumpkin	
39133	0.770143	Add	almond	
14395	0.773105	Add	tomato	
18163	0.782610	Add	onion	
10470	0.782994	Add	pie	
3023	0.787229	Add	tree	
20340	0.793602	Add	bean	
34968	0.794979	Add	watermelon	

Cluster 1: stab

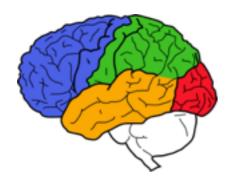
Cluster 1

Columns 🔹 Row filter (regexp)			
Id	Distance [†]	Adjust	Word
14979	0.000000	Remove	stab
7728	0.868853	Add	punch
469	0.909304	Add	shot
12820	0.909750	Add	thrust
8934	0.939908	Add	shell
10880	0.951466	Add	hammer
6975	0.951679	Add	bullet
1848	0.962053	Add	push
10888	0.962319	Add	eyed
718	0.965448	Add	hand
5865	0.966663	Add	grab
4611	0.967574	Add	swing
302	0.975696	Add	hit
869	0.976967	Add	force
1597	0.977625	Add	attempt
5977	0.978384	Add	finger
6162	0.978776	Add	knife
3434	0.980028	Add	sharp
1504	0.980160	Add	struck
39157	0.980219	Add	slug

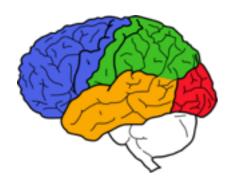
Cluster 1: iPhone

Cluster 1

Columns 🛟 (Row filter (regexp)			
Id	Distance [†]	Adjust	Word
2964	0.000000	Remove	iPhone
6377	0.359153	Add	iPad
22542	0.554838	Add	iOS
10081	0.585379	Add	smartphone
5824	0.587948	Add	iPod
43921	0.608292	Add	PlayBook
18025	0.653021	Add	iPhones
6439	0.656983	Add	Android
38104	0.681779	Add	<u>3GS</u>
8088	0.690880	Add	BlackBerry
24581	0.696648	Add	Zune
33435	0.713150	Add	Smartphone
19186	0.714883	Add	Blackberry
9326	0.715027	Add	handset
26020	0.739856	Add	Droid
30557	0.756973	Add	Treo
12057	0.762164	Add	smartphones
6878	0.769016	Add	app
8211	0.779153	Add	iTunes
28120	0.787939	Add	iPads



• Embedding vectors trained for the language modeling task have very interesting properties (especially the skip-gram model).



• Embedding vectors trained for the language modeling task have very interesting properties (especially the skip-gram model).

$E(hotter) - E(hot) + E(big) \approx E(bigger)$

E(*Rome*) - E(*Italy*) + E(*Germany*) ≈ E(*Berlin*)



• Embedding vectors trained for the language modeling task have very interesting properties (especially the skip-gram model).

$E(hotter) - E(hot) + E(big) \approx E(bigger)$

E(*Rome*) - E(*Italy*) + E(*Germany*) ≈ E(*Berlin*)

Skip-gram model w/ 640 dimensions trained on 6B words of news text achieves 57% accuracy for analogy-solving test set.



• Embedding vectors trained for the language modeling task have very interesting properties (especially the skip-gram model).

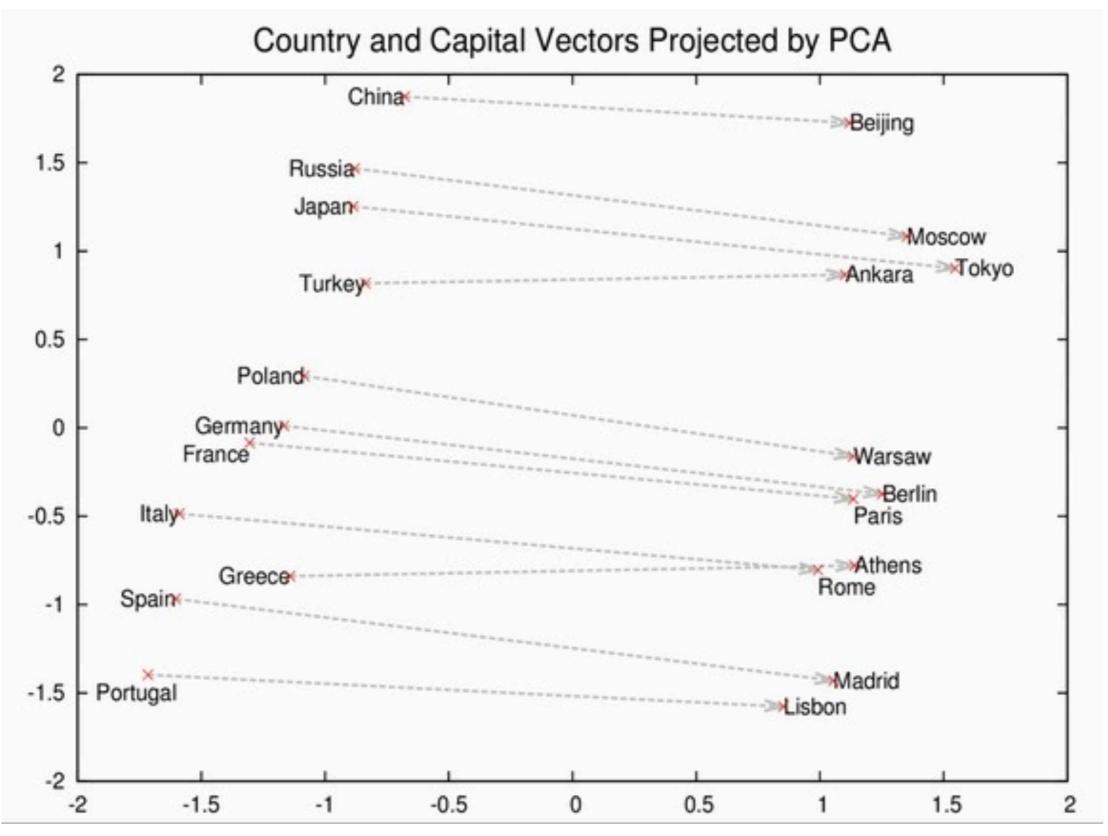
$E(hotter) - E(hot) + E(big) \approx E(bigger)$

E(*Rome*) - E(*Italy*) + E(*Germany*) ≈ E(*Berlin*)

Skip-gram model w/ 640 dimensions trained on 6B words of news text achieves 57% accuracy for analogy-solving test set.

Details in: Efficient Estimation of Word Representations in Vector Space. Mikolov, Chen, Corrado and Dean. Posted on Arxiv.

Visualizing the Embedding Space



Important Problems w.r.t. Representations

- Representing data in both raw form and in terms of high level representations derived from raw data will be important
- If we want to store and manipulate derived features in addition to raw data:
 - how do we design systems to perform fast high-level queries against large corpora?
 - how do we automatically and quickly incorporate new data into our model of the world?
 - how do we generalize from one particular task to many other tasks?
 - how do we minimize human effort for accomplishing all of this?

Automatic Representations

- In the future, I believe:
 - Systems will become more self-managing and self-tuning
 - Automatically building high-level representations from raw data will be key to answering difficult queries about raw data
 - Being able to combine many different types of data together will be important

Thanks!

• Questions? Thoughts?

Further reading:

- Dean & Ghemawat. MapReduce: Simplified Data Processing on Large Clusters, OSDI 2004.
- Chang, Dean, Ghemawat, Hsieh, Wallach, Burrows, Chandra, Fikes, & Gruber. Bigtable: A Distributed Storage System for Structured Data, OSDI 2006.
- Corbett, Dean, ... Ghemawat, et al. Spanner: Google's Globally-Distributed Database, OSDI 2012
- Dean & Barroso, The Tail at Scale, CACM Feb. 2013.
- •Le, Ranzato, Monga, Devin, Chen, Corrado, Dean, & Ng. Building High-Level Features Using Large Scale Unsupervised Learning, ICML 2012.
- Dean et al., Large Scale Distributed Deep Networks, NIPS 2012.
- Mikolov, Chen, Corrado and Dean. Efficient Estimation of Word Representations in Vector Space, ICLR 2013.
- http://research.google.com/people/jeff

